

Reliability of Bonded Interfaces

PI: Douglas DeVoto National Renewable Energy Laboratory May 14, 2013

Project ID: APE028

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: FY10

Project End Date: FY13

Percent Complete: 85%

Budget

Total Project Funding:

DOE Share: \$2,300K

Funding Received in FY12: \$650K

Funding for FY13: \$625K

Barriers and Targets

- Cost
- Weight
- Performance and Lifetime

Partners

- Interactions / Collaborations
 - General Motors, Btech, Semikron,
 Heraeus, Kyocera, Virginia Tech, Oak
 Ridge National Laboratory (ORNL)
- Project Lead
 - National Renewable Energy Laboratory

Relevance

- Excessive temperature degrades the performance, life, and reliability of power electronics components.
- Interfaces can pose a major bottleneck to heat removal.
- Bonded interface materials (BIMs), such as solder, degrade at higher temperatures and are prone to thermomechanical failure.

Traditional Power Electronics Package

Relevance

 As operating temperatures increase, the coefficient of thermal expansion (CTE) mismatch between the substrate and the base plate causes defect initiation and propagation in the joining layer.

Objectives

Overall Objective

- Investigate the reliability of emerging BIMs (such as sintered silvers, lead-free solders, and thermoplastics with embedded carbon fibers) for power electronics applications to meet the thermal performance target of 5 mm²K/W
- Identify failure modes in emerging BIMs, experimentally characterize their life under known conditions, and develop lifetime estimation models

Address Targets

- High-performance, reliable, low-cost bonded interfaces enable:
 - Compact, light-weight, low-cost packaging
 - High-temperature coolant and/or air cooling

Uniqueness and Impacts

 Thermal performance and reliability of emerging sintered materials and thermoplastics for large-area attachments were characterized

Milestones

Date	Description	
October 2012	Completed finite element analysis (FEA) to determine strain energy density in lead-based solder samples with various fillet radius geometries	
December 2012	Completed experimental temperature cycling of Btech HM-2 and Semikron sintered silver samples to 2,000 cycles	
February 2013	Completed FEA to determine strain energy density in lead-based solder samples under various temperature cycle profiles	
June 2013	Complete experimental temperature cycling of lead-based solder samples to 2,000 cycles	
July 2013	Complete double lap shear testing of lead-based solder samples and use stress/strain data to revise viscoplastic properties needed for FEA	

Approach

Sample Assembly

- Five samples of each BIM were synthesized for testing and included:
 - Silver plating on the substrate and copper base plate
 - Substrate based on a Si₃N₄ active metal bonding process
 - An interface between 50.8-mm x 50.8-mm footprint
- Samples followed manufacturer-specified reflow profiles, and bonds were inspected for quality

Credit: Douglas DeVoto, NREL				
Sample Assembly				

Bond Material Type	Name	Comments
Solder	Kester Sn63Pb37	Baseline (lead-based solder)
Sintered Silver	Semikron	Based on Semikron synthesis process
Adhesive	Btech HM-2	Thermoplastic (polyamide) film with embedded carbon fibers

Temperature Cycling

- Cycle Profile
 - -40°C to 150°C
 - 5°C/minute ramp rate
 - 10 minute dwell/soak time
- Failure Mechanisms
 - BIM: voids and cohesive or adhesive/interfacial fractures
 - Substrate: Cu-to-Si₃N₄ delamination
 and Si₃N₄ cracking

Cohesive Fracture

Adhesive/Interfacial

Fracture

Substrate Delamination and Cracking

Credit: Douglas DeVoto, NREL (all photos

Voids

Thermoplastic Evaluation

Btech HM-2 (Carbon Fibers within Polymer Matrix)

- Bonding
 - HM-2 was cut to the base plate dimensions
 - The sample assembly was placed in the hot press and raised to 195°C
 - 1 MPa (150 psi) of pressure was applied
 - Bond line thickness was measured to be 88.9 μm
- Reliability Results
 - After 2,000 cycles, the bonded interface remained defect-free

Hot Press

Sample Assembly

Credit: Douglas DeVoto, NREL (all photos)

Sintered Silver Evaluation

Semikron Sintered Silver

- Bonding
 - Si₃N₄ edges were ground off to match the metallization layer
 - The sample assembly was placed in a hot press and raised to its processing temperature; then pressure was applied
 - Compression testing of substrates at ORNL showed cracking of substrates required between 30 MPa to 50 MPa of pressure
- Reliability Results
 - Uniform bonds were obtained
 - Cohesive fracture initiated at bonding perimeter

Sample Assembly

Gredit: Douglas Devoto, NREL (all photos)

Sintered Silver Evaluation

After 2,000 cycles, perimeter fracturing reached 11% to 21%

Credit: Paul Paret, NREL

Solder Evaluation

Lead-based (Sn63Pb37) Solder

- Bonding
 - Manual stencil was used to apply a 127-μm-thick solder layer to the substrate and base plate surfaces
 - The assembled sample was placed in a vacuum solder reflow oven and raised to its processing temperature
- Reliability Results
 - Bonds with voiding under 2% were obtained
 - Cohesive fracture initiated at bonding perimeter

Credit: Douglas DeVoto, NREL (all photos)

Solder Evaluation

After 1,000 cycles, perimeter fracturing reached 11% to 14%

BIM Finite Element Modeling

- Temperature cycling parameters:
 - -40°C to 150°C
 - 5°C/minute ramp rate
 - 10 minute dwell/soak time
- Viscoplastic material model applied to solder layer
- Temperature-dependent elastic material properties incorporated for base plate and substrate

BIM Finite Element Modeling

- Stress-strain hysteresis loops help to understand the inelastic behavior of the solder interface
- Energy stored in the solder interface region due to deformation during thermal loading is referred to as the strain energy density

BIM Finite Element Modeling

- Hysteresis loops for variations in package geometry, dwell time, and ramp rate were explored
 - Geometry: 1.5 mm and 2 mm fillet radius
 - Ramp rate: 5°C/min, 10°C/min, and 15°C/min
 - Mean temperature: 50°C, 10°C, and 100°C
 - Dwell time: 10 min, 30 min, and 75 min
- Strain energy density value will be compared to experimental fracture rate to obtain a cycles-to-failure correlation for lead-based solder

BIM Mechanical Characterization

- Strain prediction of solder material is dependent on stress, temperature, and time
 - A high enough stress will cause the material to plastically deform
 - Solder has a tendency to creep (time-dependent plasticity)
 at room temperature; this increases as operating (absolute)
 temperature approaches the melting temperature
- Viscoplasticity models combine plasticity and creep deformations into one equation to properly define solder in FEA
- Sample testing using a double-lap shear test fixture at various strain rates and temperatures generates the needed data to characterize the viscoplastic nature of solder

Double-Lap Shear Fixture and Sample

Credit: Douglas DeVoto, NREL

Collaboration and Coordination

Partners

- Btech (Industry): collaboration on optimizing thermoplastic BIM for large area attachment
- General Motors (Industry): technical guidance
- Heraeus (Industry): collaboration on using low-pressure sintered silver materials before products are commercially available
- Kyocera (Industry): provided insight on Si₃N₄ substrate bonding process and advantages over AIN substrates
- ORNL (Federal): collaboration to determine maximum pressure that
 Si₃N₄ substrates could withstand
- Semikron (Industry): provided bonded samples to NREL using company's silver sintering process
- Virginia Tech (University): collaboration on synthesis of samples using sintered silver material

Proposed Future Work (FY13)

- Derive viscoplastic parameters for lead-based solder from double-lap shear test experiments
- Expand strain energy density versus cycles-to-failure models to lead-free solders
- Complete 2,000 thermal cycles on lead-based solder samples
- Report on reliability of each BIM under specified accelerated test conditions

Summary

DOE Mission Support

 BIMs are a key enabling technology for compact, light-weight, low-cost, reliable packaging and for high-temperature coolant and air-cooling technical pathways

Approach

 Synthesis of various bonds between substrates and base plate, thermal shock/temperature cycling, high-potential test and bond inspection (acoustic microscope), and strain energy density versus cycles-to-failure models

Accomplishments

- Evaluated a number of bonded interfaces subjected to temperature cycling
 - Lead-based solder, sintered silver, thermoplastic
- Implemented FEA for solder bonded interface geometries

Summary

Collaborations

General Motors, Virginia Tech, ORNL, Btech, Semikron, Heraeus,
 Kyocera

Future Work

- Derive viscoplastic parameters for lead-based solder from double-lap shear test experiments
- Expand strain energy density versus cycles-to-failure models to lead-free solders
- Complete 2,000 thermal cycles on lead-based solder samples
- Report on reliability of each BIM under specified accelerated test conditions

Acknowledgments:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Team Members:

Mark Mihalic Paul Paret

For more information contact:

Principal Investigator
Douglas DeVoto
Douglas.DeVoto@nrel.gov
Phone: (303)-275-4256

APEEM Task Leader

Sreekant Narumanchi @nrel.gov Phone: (303)-275-4062